.

Wednesday, September 4, 2019

OSI MODEL Essay -- essays research papers

Michael Rauseo  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚   IT310  Ã‚  Ã‚  Ã‚  Ã‚     Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚   OSI Model In the early years of computer and network research and development many systems were designed by a number of companies. Although each system had its rights and were sold across the world, it became apparent as network usage grew, that it was difficult, to enable all of these systems to communicate with each other. In the early 1980s, the International Organization for Standardization (ISO) recognized the need for a network model that would help companies create common network implementations. The OSI reference model, released in 1984, addresses this need. The OSI reference model became the primary architectural model for communications. Although other architectural models have been created, most network vendors relate their network products to the OSI reference model. The OSI model describes the processes necessary for effective communication in terms of a seven layered model. The seven layers are : Physical Layer The physical layer defines the electrical, mechanical, procedural, and functional specifications for activating, maintaining, and deactivating the physical link between end systems. Such characteristics as voltage levels, timing of voltage changes, physical data rates, maximum transmission distances, and physical connectors, are defined by physical layer specifications. Data Link Layer The data-link layer provides error-free transfer of data frames from one computer to another over the physical layer. The layers above this layer can assume virtually error-free transmission over the network. The data-link layer provides the following functions. - Establishing and terminating a logical link between two computers identified by their unique network interface card. - Controlling frame flow by instructing the transmitting computer not to transmit frame buffers - Sequentially transmitting and receiving frames - Providing and expecting frame-acknowledgment, and detecting and recovering from errors that occur in the physical layer by ret... ...cation layer of one system will be readable by the application layer of another system. If necessary, the presentation layer translates between multiple data representation formats by using a common data representation format. The presentation layer concerns itself not only with the format and representation of actual user data, but also with data structures used by programs. In addition to actual data format transformation, the presentation layer negotiates data transfer syntax for the application layer. Application Layer The application layer is the OSI layer closest to the user. It differs from the other layers because it does not provide services to any other OSI layer, but rather to application processes lying outside the scope of the OSI model. Examples include spreadsheet programs, word-processing programs, banking terminal programs, etc. The application layer identifies and establishes the availability of intended communication partners, synchronizes cooperating applications, and establishes agreement on procedures for error recovery and control of data integrity. Also, the application layer determines whether sufficient resources for the intended communication exist. []

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.